Blog

# The Quest for 700: Weekly GMAT Challenge (Answer)

Yesterday, Manhattan GMAT posted a 700 level GMAT question on our blog. Today, they have followed up with the answer:

The brute-force way to solve this problem is literally to add up the first 15 positive perfect squares, from 1 to 225, inclusive. This is not necessarily completely out of bounds, given that we only have to sum up 15 numbers, all of which we should know already, and several of which are small. However, we should look for a shortcut using the formula.

Unfortunately, there is an unknown constant in the formula, but by using a small test number, we can solve for this constant. You can certainly pick n = 1, since it is a positive integer:

12 = 13/3 + c12 + 1/6

1 = 1/3 + c + 1/6

1/2 = c

If you feel uncomfortable picking n = 1, you can pick n = 2 and come to the same result almost as quickly.

Now, we plug n = 15 into the formula and solve:

12 + 22 + … + 152 = 153/3 + 152/2 + 15/6

= 15×15×15/3 + 15×15/2 + 15/6

= 15×15×5 + 15×15/2 + 5/2

= 225×5 + 225/2 + 5/2

= 1,125 + 230/2

= 1,125 + 115

= 1,240

The correct answer is (C).

### Upcoming Deadlines

• Dartmouth Tuck (Round 3)
• London Business School (Round 3)
• Texas McCombs (Round 3)
• Vanderbilt Owen (Round 4)
• Berkeley Haas (Round 4)
• Penn State Smeal (Round 4)
• Penn Wharton (Round 3)
• Columbia (Round 3)
• Northwestern Kellogg (Round 3)
• Virginia Darden (Round 3)
• Chicago Booth (Round 3)
• Michigan Ross (Round 3)
• MIT Sloan (Round 3)
• Stanford GSB (Round 3)
• Yale SOM (Round 3)
• Cornell Johnson (Round 3)
• UCLA Anderson (Round 3)
• USC Marshall (Round 3)
• Toronto Rotman (Round 4)
• UNC Kenan-Flagler (Round 4)
• Georgetown McDonough (Round 4)

Click here to see the complete deadlines

### 2023–2024 MBA Essay Tips

Click here for the 2022–2023 MBA Essay Tips