Blog

# The Quest for 700: Weekly GMAT Challenge (Answer)

Yesterday, Manhattan GMAT posted a 700 level GMAT question on our blog. Today, they have followed up with the answer:

The best way to approach this problem is to generate an actual table according to the rules. Let’s start with the most concrete information we know: the entry in the upper left corner is 1. Now let’s build the table to the right and then down.

According to the second rule, entries double as we go to the right, so the first row looks like this:
1   2   4   8   16 …

According to the first rule, entries “flipflop” in sign (+/–) as we go down the table. So the first five rows and columns look like this:
1   2   4   8   16
-1  -2  -4  -8  -16
1   2   4   8   16
-1  -2  -4  -8  -16
1   2   4   8   16

Since n is an odd integer greater than 4, we can choose n = 5 and stop here.

The process of adding up all the entries benefits from cancelation. The first four rows cancel each other out completely. All that is left is the last row, which sums up as follows: 1 + 2 + 4 + 8 + 16 = 31. Plugging n = 5 into the answer choices, we get the following:

(A) 0    INCORRECT
(B) n2 – 1 = 52 – 1 = 24    INCORRECT
(C) n2 + 1 = 52 + 1 = 26    INCORRECT
(D) 2n – 1 = 25 – 1 = 31     CORRECT
(E) 2n + 1 = 25 + 1 = 33    INCORRECT

We can prove that 2n – 1 is the general formula for the sum of 1, 2, 4, etc. up to 2n – 1 (which will be the last entry in the last row), but there is no need to do so.

The correct answer is (D).

A first-of-its-kind, on-demand MBA application experience that delivers a personalized curriculum for you and leverages interactive tools to guide you through the entire MBA application process.

### Upcoming Deadlines

• Columbia J-Term (Round 2)
• Cambridge Judge (Round 1)
• HBS (Round 1)
• Penn Wharton (Round 1)
• Notre Dame Mendoza (Early Decision)
• Virginia Darden (Early Decision)
• Michigan Ross (Round 1)
• Columbia (Round 1)
• INSEAD (August Intake)
• Stanford GSB (Round 1)
• Yale SOM (Round 1)
• Northwestern Kellogg (Round 1)
• Berkeley Haas (Round 1)

Click here to see the complete deadlines

### 2024–2025 MBA Essay Tips

Click here for the 2023–2024 MBA Essay Tips

### MBA Program Updates

Explore onTrack — mbaMission’s newest offering allowing you to learn at your own pace through video. Learn more