The Quest for 700: Weekly GMAT Challenge (Answer)

Yesterday, Manhattan GMAT posted a GMAT question on our blog. Today, they have followed up with the answer:

First, translate the given information into an equation. Go phrase by phrase. “The sum of the reciprocals of a, b, and c” is 1/a + 1/b + 1/c. Notice that you first take reciprocals, then you add the reciprocals together.

Now, set that equal to “the reciprocal of the product of a, b, and c,” which is 1/(abc). Notice that we first take the product of a, b, and c (which is abc), and then take the reciprocal of that product.

The equation is this:
1/a + 1/b + 1/c = 1/(abc)

Now rearrange to isolate a on one side. Make a common denominator on the left side (abc), so that you can add the fractions:
1/a + 1/b + 1/c = bc/(abc) + ac/(abc) + ab/(abc) = (bc + ac + ab)/(abc)

Since the right side of the original equation is 1/(abc), which happens to have the same denominator, you can set the numerators equal:

bc + ac + ab = 1

Now solve for a:

ac + ab = 1 – bc
a(c + b) = 1 – bc
a = (1 – bc)/(c + b)

Theoretically, you can solve this problem by plugging numbers for the variables, but finding three consistent values of a, b, and c (to satisfy the complicated condition) is rather difficult. A pure algebraic approach is faster and more secure in this case.

The correct answer is B.

onTrack by mbaMission

A first-of-its-kind, on-demand MBA application experience that delivers a personalized curriculum for you and leverages interactive tools to guide you through the entire MBA application process.

Get Started!

Upcoming Events

Upcoming Deadlines

  • Berkeley Haas (Round 1)

Click here to see the complete deadlines

2024–2025 MBA Essay Tips

Click here for the 2023–2024 MBA Essay Tips

MBA Program Updates

Explore onTrack — mbaMission’s newest offering allowing you to learn at your own pace through video. Learn more