Blog

The Quest for 700: Weekly GMAT Challenge (Answer)

Yesterday, Manhattan GMAT posted a GMAT question on our blog. Today, they have followed up with the answer:

The first trick is to draw this complicated picture correctly!
 

 
Next, work your way from the inside out. Pick the radius of circle F as 1. Notice that this is the distance from the center of triangle G to a vertex of G. For now, don’t worry about finding the area of triangle G—we’ll see a shortcut later.
 
Now, what is the radius of the next circle out, circle D? 1 is the distance from the center of square E to the center of any side of that square. So we can draw a 45-45-90 triangle and find that the “half-diagonal” of square E is √2. This is also the radius of circle D.

 
Applying the same reasoning, we can see that √2 is the distance from the center of square C to the center of any side of that square. We can draw another 45-45-90 triangle and find that the “half-diagonal” of square C is 2. This is also the radius of circle B.

 
Finally, we can draw a 30-60-90 triangle within equilateral triangle A and see that the distance from the center to any vertex of triangle A is 4.

 
Now, rather than calculate each area and divide, we can use a huge shortcut. The distance from center to vertex for triangle G was 1; the same distance for triangle A is 4. Since these two triangles are similar, this means that every “distance” ratio for the two triangles will be 4 : 1. For instance, their side lengths will be in a 4 : 1 ratio. And since areas are squares of distances, the ratio of areas will be 42 to 12, or 16 : 1.
 
The correct answer is D.


onTrack by mbaMission

A first-of-its-kind, on-demand MBA application experience that delivers a personalized curriculum for you and leverages interactive tools to guide you through the entire MBA application process.

Get Started!


Upcoming Events


Upcoming Deadlines

  • Cambridge Judge (Round 1)
  • HBS (Round 1)
  • INSEAD (August Intake)
  • Yale SOM (Round 1)
  • Berkeley Haas (Round 1)

Click here to see the complete deadlines


2024–2025 MBA Essay Tips

Click here for the 2023–2024 MBA Essay Tips


MBA Program Updates

Explore onTrack — mbaMission’s newest offering allowing you to learn at your own pace through video. Learn more